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Unified Theory of Linear Noisy Two-Ports

James L. DietrichMember, IEEE

Abstract—Network noise invariants are introduced that leadto
improved noise characterization and a complete thep of linear
noisy two-ports. Minimum power added noise temperatre and
minimum cold load temperature are identified as nework noise
invariants under lossless embedding. Associated iamant
equations provide explicit relations between all kawn and new
network invariants. From these equations, an invadnt under
lossless embedding is identified that defines netwonoise—gain
coupling in the most basic terms of noise correlath, minimum
noise temperature, and complex nonreciprocal gainA noise
correlation parameter q is formally introduced that is invariant to
lossless input and/or output transformation. Condiions and
bounds are established, and it is shown thai = 2 for low-noise
active devices. An exact expression for thg parameter of a
minimum noise cascade network is given in terms afonstituent
device invariants. From a systems point of view, # cascadeq
parameter represents source impedance noise sengtty. A lower
bound on cascadey is determined by device invariants minimum
power added noise temperature and minimum cold load
temperature. It is shown that the cascadeq lower bound is
realized by simultaneous noise and power match.

Index Terms—Active cold load, low-noise amplifier (LNA),
noise measure, noise parameter, noise temperaturgise theory.

I. INTRODUCTION

N INVARIANT quantity identifies a fundamental
property of a physical system that is unalteredmigre
changes to that system’s environment. Invariartenaderve as
a figure of merit or benchmark value for comparptysical
systems, verifying computations or measurements,
establishing theoretical performance bounds. Thay also
provide insight and better understanding of the rafrgg
principles and behavior for the system to whichyta@ply.
The purpose of this paper is to identify and discseveral
new invariants of linear noisy two-port networksading to a
unified noise theory.
The first two-port invariant came in 1954 when Mag)

In order to describe the behavior of a linear twotp
containing internal noise sources, Rothe and DaljiKe
introduced the “Theory of Noisy Fourpoles” in 19&ich
showed that four noise parameters are required.SDae set
of noise parameters consists of: 1) minimum naseperature
Temin; 2) Optimum source conductanGg,; 3) optimum source
susceptancB,; and 4) noise resistan&g. In 1958, following
shortly after the works of Mason and Rothe and KghHaus
and Adler [5] published the “Optimum Noise Perfonoa of
Linear Amplifiers,” which identified a two-port neé invariant
under lossless embedding callathimum noise measure,\
Unlike minimum noise temperatuiie,, this amplifier figure
of merit accounts for gain and noise in a way thas not
change with feedbackM,,, defines the best possible noise
performance for a high-gain cascade of identicalldi®rs.

Since the discovery of signal invaridiitand noise invariant
Muin, there have been two fundamental additions to pou-
noise characterization. First, it was shown by leaf§] in
1967 that the producR,Gyy is invariant under the more
restrictive condition of lossless input transforibat He
proposed the parametllr= R,Gp,; to replaceR,, recognizing
that the invariant property d makes it a more fundamental
quantity thanR,. Secondly, Wiatr [7], [8] first observed in
1980 that the relation NTg/Temin > 1 must be satisfied to
represent noise of a physical two-poff, (s the reference
temperature 290 K.) Thus, a theoretical bound stabéshed
on the relative value of two noise parameters,riti® of N
and Temin.

In this paper, we introduce new network invariants
Bhysical interpretations, and invariant relatiohattform a
complete and unified two-port noise theory. Sectioaf the
paper discusses the two independent noise invariamder
lossless embedding that relate all other noisen,gand
stability invariants of the two-port. Physical imectations of
these two invariants provide a deeper understandihg
network operation than do noise temperature orenmisasure.
In Section Ill, we reveal the significance and tnagure of the

deduced an invariant network property under lossleguantity NTy/ Temn by formal introduction asoise correlation

embedding and identified it asaximum unilateral power gain
U. A discussion of unilateral gain and invarianca ba found
in a 1992 tutorial review by Gupta [2]. In 1962, Rt [3]
introduced an invariantstability factor k and discussed
important invariant power gainsjaximum available gain
andmaximum stable gain {3
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parameter gWe will prove the two sufficient conditions taken
together forg < 2, irrespective of network topology or number
of noise sources, and furthermore show that2 for any low-
noise amplifier deviceSection IV applies new knowledge of
two-port invariants to the high-gain cascade loiseo
amplifier case. We derive the lower bound of cascqd
parameter, expressed in terms of constituent aieplieneral
invariants, then show that the lower bound is redli by
simultaneous noise and power match of the inditidua
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amplifiers. Section V concludes the paper with mmiary and
discussion of noise theory results.

There are two independent noise power
(expressed as temperature) associated with a tviarptwork.
The first of these that we will examine is simpblated to
minimum noise measure. However, the physical imetgion
of this invariant is much more revealing becausdetcribes
performance of amdividual amplifierrather than a high-gain
cascade. In addition, it explains clearly why ndemperature
fails to describe fundamental amplifier noise perfance.

NETWORKNOISE INVARIANTS

A. Power Added Noise Temperature
The invariant we introduce minimum power added noise

temperaturg(MTo)min. TO understand the physical significance

of this interpretation, consider the maser amplifiewer flow
diagram of Fig. 1. Available input signal powerthe maser is
S. Maser output consists of amplified sigi&lS plus added

maser noisé\,. With a depleted lower energy state, no signal

power is absorbed and there is total incident s$igeftection
at the maser port. The output signal is partition#d two
parts: 1) reflected input signal pow8r and 2) signal power
added by the stimulated emission proce&, £ 1)S. Only

added ssignal and noise powers generated by internal mase

processes determine its true noise performancesethdfor
any amplifier, available input signal power mustéeluded
from considerationlinclusion of available input signal power
is why traditional noise temperature fails to defin
fundamental amplifier noise performance

Power added noise temperatid, is easily obtained by
referring output noise to the input accordind\tf(G, — 1) and
applying the definition of noise measure. We retaim noise
measureM notation to show explicitly its relation to power
added noise temperature and to acknowledge the afdilaus
and Adler. Lastly, it is easy to show that powedexd noise
temperature is preserved for any cascade, indepenfigain

invariants

2

Incident signal
100% reflection
Added signal
Added noise

e
e
e

MASER

Fig. 1. Maser amplifier power flow diagram. Thigoé of amplifier readily
shows whyadded signal and noise power components define trueenois
performance—they alone result from internal deyiceesses.
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Fig. 2. Active cold load diagram illustrating thvariance of minimum cold
load temperature under lossless embedding.
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Fig. 3. Invariant conditions. (a) Thyeneralcondition of lossless embedding
includes feedback and defines fundamental invaear(b) The special
condition of lossless input/output transformatiom s$imple impedance
transformation at each port.

or gain order. Thus, optimum high-gain cascade enois

performance is simply a consequence of the indalidu
amplifier invariant.

B. Cold Load Temperature

We identify minimum cold load temperaturey], as the
second two-port invariant under lossless embedding. the
best possible noise performance of a two-port nétwo
operated as aactive cold load Fig. 2 shows an active two-
port embedded in a passive lossless four-port m&twehich
is then connected to a passive lossless threermivtork.
Invariance means that for all possible four-porbeddings, a
three-port network can be found that gives minimawailable
output noise powekTy,,B, wherek is Boltzmann’s constant
andB is noise bandwidth. Note that we are interestdg ion
active two-ports here since the output noise of pagsive
one-port network with loss is defined by its phgsic
temperature.
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In view of Fig. 2, the invariance of minimum coldad
temperature may seem obvious. However, the resuless
obvious when the active network is generalizedn@mbitrary
number of active two-port devices. In a later pedttion, Haus
and Adler [9] proved that eigenvalues are preseraad thus
also T.min, for n arbitrary active devices in angort lossless
embedding. This aspect of their work has receivigtte |
attention, probably because the focus has beennypiifier
noise performance. The proof will be important whenlater
derive a noise parameter lower bound for optimurscade
networks. A practical consequence is that activiel doad
performance cannot be improved by employing mong- lo
noise devices.

C. Invariant Conditions

It is important to understand and distinguish betwéwvo
different conditions of two-port invariants. In Fig, lossless
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embeddingcomprises a passive lossless four-port connectioaference temperatufig.)

to the two-port, wherea®ssless inpubutput transformation Invariant equations are obtained by equating thedymt

connects separate uncoupled passive lossless two-pend sum of eigenvalues to determinayit and traceN,

networks to the two-port. Lossless embedding ireud respectively. Initially, the equations are in teraissignal and

feedback and is the more general condition. Theeefan noise parameters contained in (3) and (4). Fromsethe

invariant subject to lossless embedding constit@esore expressions, all invariant quantities are iderdifieat relate to

fundamental physical property of the two-port. the general invariantsMTo)min and Temin. The invariant
The tables below summarize noise, gain, and dabiliequationsare shown here in final form.

invariants of linear noisy two-ports discussed liis tpaper.

Known invariants are shown in Table | and new irvats (q-DT2,
introduced are given in Table Il. Expressions aradmittance (MT5) i Tomin = 1 (6)
parameter form. The invariant type is terngesheralfor those 1_?

subject to lossless embedding aspecial in the case of m
lossless input/output transformation. The conditwii now

ToninD

be clear when the unmodified term “invariant” isedsin the (MT,) iy = Toy = —20 )
paper with these various quantities. 1- 1
D. Invariant Equations G
A modified form of thecharacteristic noise matrigiven by where
Haus and Adler [5, eq. (41)] is
2k
N =i[P-TPT*]'C 1) A=2-q+- - ®)
aopt ms

with permutation matriP, general-circuit matrixT, andnoise

correlation matrixC defined by The introducedmaximum invariant power gain & is

similar to well-known maximum available ga@y,, and nearly
identical to Kotzebue’'s maximally efficient poweaig G
[12]. G is in fact closely related to thé-function, and to the
defining condition of two-port activity and passwil3, pp.
p:[o 1} 2) 135-141]. Gt is available gain at minimum noise
temperature, known asssociated gainAnalytic expressions
for all invariants in the above equations are giireffables |

A B and Il.
T= ®3) _ . :
CcC D E. Noise—Gain Coupling
As suggested above, the isolated gajn appearing in the
q qY., invariant equations does indeed have a speciaifisimce.
C_ 2- G g Consider thaG,, is the only signal quantity present in (6). The
C=T,. ont . (4) right-hand side of (6) is itself an invariant gugntunder
2- 9Yop Yopt Vot lossless embedding. We thus have an expression of
Gopt Gopt fundamental two-port noise—gain interaction withryiag

embedding circuit conditions. The denominator maybitten

The symbol “*" means complex conjugate of a varabhd as the product of a general invariant and a spauiatiant,

the superscript “+” denotes conjugate transpose afatrix.
With C defined this way, the eigenvalues of characteristi 1 [ 1)#1_&

2

1-—=[1-= ©)
y21

noise matrixN are the invariantsMTo)min and Tgmin- The G U
relation of noise correlation matri€ to noise matrices of
Haus and Adler [5, eq. (24)] and Hillorand and Rug$30, eq.
(11)] is, respectively,

mi

Substituting (9) into (6) and collecting generaldriants on
the left-hand side, we have

kBC =8d" =2BC,. (5) -T2
g (I_Uij(MTO)minTcmin :M . (10)
(There are two errors in the Hillbrand and Rugsaper’'s ‘1_)/12
correlation matrix equation (11): M, and Y*,, should be Yz

reversed [11]; and 2) absolute temperatdreshould be

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.ol



This is the author’s version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is availablelatp://dx.doi.org/10.1109/TMTT.2013.2284492

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATIONNUMBER (DOUBLE-CLICK HERE TO EDIT) < 4

This is two-portnoise—gain couplingn its most basic form. i2 =4kT,G,B (15)
The right-hand side of (10) contains noise paramaejeand
Temin, @nd the inverse of signal quantity,/y;, known as
complex nonreciprocal gaifi3, pp. 175-176].

For a high-gain active two-port devicdTo)min = Temin and
Gmi >> 1 so that (6) can be approximated as

Noise parameters are related to the above soumsanpters
by

Temin = 2RnT0 (Gy + Gopt) (16)
Tcmin = (q - 1)T

emin *

(11)
G 1/2

. . G, =| — +G? (17)
When the device is also low-noise, we expect thaannot op R, v
approach unity since that would imply very low weticold
load temperature—intuitively, an unlikely physigeaissibility. B --B (18)
In the following section, we find this is indeedr@ct as an opt .
investigation of the-parameter is undertaken.

noisy two-port

Ill. NOISECORRELATION PARAMETER

It is evident from invariant equation (10) that tle source
parameter plays a fundamental role in two-port petw |
characterization. It is the remaining parametethef network Ye
invariant equations to be understood in terms ofsidal I
meaning. We begin with the formal introduction wbise
correlation parameter gefined by known noise parameters as

O
|

noise network noise-free :
network I
|

[———— ¢ ———&¢————

_ 4RnGoptT0 (12)
Terin Fig. 4. Chain representation of linear noisy tvestpith partially correlated
sources, andin and general-circuit matrik.

q

According to (12)g is invariant sincéN = R,Gopt and Temin are
invariant. From (6),g < 1 is not allowed to give negative

invariant temperatures of an active network. Furtioge, Substituting (16) into the defining equation (12) have
limitations on the cold load temperature (11) iadic thatq
cannot approach unity for a high-gain low-noiseickev q= 2 _ (19)

In this section, we will continue to develop a cdetp
physical understanding of tleeparameter. We then address a
broad class of two-port networks, the importanteca low-
noise active devices. The properties of a low-naistive
network will be identified that lead to a consttagm theg-
parameter value. In fact, we will show tlipt 2 for any low-
noise amplifier device.

Equation (19) expresses the correlation natureq.ofThe
quantity G,/G, is the correlation coefficient between noise
sourcese, andi, whenB, = 0 (otherwise the correlation is
complex-valued). Sinc&, > 0 andR, > 0, we can see from
A. Noise Characterization (17) that the range of this real-valued and invaréorrelation

Following Engberg and Larsen [14], the noise progerof duantity is
a linear noisy two-port can be characterized hpiae network
as shown in Fig. 4. The noise network consists afoese
voltage sources, and a noise current source partitioned into
correlated and uncorrelated paiis= Y,e, + iy, respectively.

The correlation. admittance Y anq mean-squ.ared spurceThe resuling range of noise correlation paramedeis
values are defined by the following, which includeise qoscrined in Fig. 5. Note the three important cadesvalue.
resistance Randnoise conductance G WhenG, = 0, the noise sources andi, areuncorrelatedand
g = 2. WhenG, = 0, we have eithefull positive correlation
with q = 1 or full negative correlationwith q = «. Fully
correlated noise sources andi, represent a single physical
€2 =4kT,R B (14) noise source within a two-port network. Practicaipéfier
devices contain physical sources having both pesiind

GV
~1s—L <1, (20)
Gopt

Y, =G, + jB, (13)
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negative correlation.

=1 q= 2 = o0
Gy,>0 Gy=0 Gy<0
Gn=0 B,=0 Gn=0
! positive ! negative
! correlation ! correlation
1 1
« + | >
- 1 2 +

q < 1 forbidden q =1 allowed

Normalized Noise Temperature

1 10
Noise SWR

100

Fig. 6. Noise temperature variation with sourceéaance showing effect of
network correlation. The rms values of noise vatagand noise currerit,
are held constant for the three limiting casesetfvork g value.

Fig. 5. Range ofg-parameter values with correlation of noise network \ye now express (22) in a more convenient form and

sources, andin.

Referring again to Fig. 4, theeffective input noise
temperature T of an active two-port is a function sburce
admittance Y= Gs + jBs according to the well-known relation

2

LR,
G

S

T, =Tomin Y, Y,

s opt

(21)

with optimum source admittancépy = Gopt + jBope. Here we
digress briefly to comment regarding the intergreraof this
equation. It is common to find in the literaturéerence taRr,
as a “sensitivity factor” based on its appearamci). This
has led, for example, to semiconductor device defig low
R, in order to reduce receiver noise temperatureatiari due
to antenna impedance change. Neither of these iseasrect,
however. The problem is that the form of (21) does
explicitly separate device noise characteristiosmfimpedance

mismatch effects. Ther, parameter is not invariant, but

subject to input transformation and superficial memductor
device treatment, neither of which affect two-ponpedance
sensitivity. Using (12) to substitute f&, in (21), we obtain
the following form with device noise and mismatctfieets

separated, as evidenced by the symmetry in admita

guantities.
Ys _Yopt i
Te =Temin + qTemin (22)
4G,G,,,

Clearly, it is noise correlation parameter that defines
sensitivity to impedance mismatch. Our anticipatsliltg~ 2

for low-noise devices means that this value mustided for
receiving system optimization and cannot be chanbgd
semiconductor device design.
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examine the effect of correlation on noise tempeeatn the
three limiting cases = 1, 2, andw. The noise equatiorin
terms of standing-wave ratio (SWR) is

(s-9°

T. = Temin
48

e

+ qTemin

(23)

whereS is thenoise SWRf source admittancé; with respect
to optimum source admittancé. If we normalizeTenin t0
that of the uncorrelategi= 2 case, theqTemin = 4RGopilo = 2
for all cases. This is correct because we holdrievalues of
noise voltages, and noise curren}, constant, and therefor®,
and G are constant according to (14), (15), and (T&)n is
determined by available noise power from the noitgvork at
the noise-free network side in Fig. 4.

Fig. 6 shows noise temperature comparison for kineet
limiting cases of full positive correlatiom & 1), uncorrelated
(g = 2), and full negative correlatiorg (= «). The most
important feature of these results is that theentésnperature
difference between adjacent plotted cases is atamingalue
of uncorrelatedTemin over all SWR. Consequently, noise
temperaturel, is nearly independent of value at high SWR,
where large available noise power of one sourdbeeg, or

n

In, dominates. This fact will be important when wealsgme
two-ports having multiple physical noise sources.

The influence ofq is greatest for thenoise matched
conditionYs = Yo, WhereS = 1. The relative values Ggmin at
S = 1 suggest a physical definition gfin terms of available
noise power. Applying the factdB to (12) and substituting
(14) gives

q - énzGopt
kT, . B’

emin

(24)
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Thys, g is the ratio of r.n.inimum avgilable powgrnjrdhe - A Teins . O Tomin2 Rs + 02 Temin2 Rop2 26
noise network at full positive correlation to ackuainimum e2 = lemin2 5 iR, IR (26)
available power pt2 s

The limiting case of full negative correlatiom E o)
deserves comment here since it Aag, = 0. A low-noise T, =T, - A Termin + A Temin R + A Temin Ropt. @7)

emin 2 4R0pt 4RS

amplifier operating at this condition or near teviuld be very
sensitive to source impedance, with noise temperagaching

many times the matched value wher 2, for example. (In since the two individual noise sources are uncateel, their
Fig. 6, noise is 25 percent of the uncorrelalggh whenS= 5ise temperatures add and we can also write
2.) The situation is identical to that of an actoadd load with

g = 1 and a similar comment (Section II-E) appliasise T =T. +T.. (28)
levels observed in unmatched amplifiers would implyery ¢ e
low and physically unreasonable, (e.g., below quantum
limit) if the q value is large.

So if theq value of a low-noise amplifier cannot approac

Equations (25)—(28) are solved for combirgeth terms of
S G, sourceseparation ratioa, and sourcestrength ratiog,

the limits ofg = 1 orqg = w0, then what must the value gbe? where
With the foregoing noise characterization backgobimplace,
we are ready to answer that question and begirmlekails of a:M (29)
proof forq = 2. Ropt
B. Network Conditions for & 2
We now prove the general network conditionsder 2 that B:M_ (30)
serve as a useful reference point for the low-naisglifier O Teming
case. The two conditions fay < 2, irrespective of network
topology or number of noise sources, are as fotlows The solution proceeds by substituting (25) and {8&) (28),

1) All noise sources within the network are mutuallyifferentiating with respect tBs, and equating to zero to give
uncorrelated.
i ithi 1/2
2) Each noise source within the network can be represk _{(1_,_ ﬂa)RopthoptZ:|
pt —

by a noise network having<2. (31)
“Noise source” here can be a single physical sowitign the a+p
network or a subset of physical sources represdntednoise
network. As we shall see, these conditions sarfficient, but Then, settindRs = Ry in (25) and (26), we obtain via (28)
not necessarfor q < 2.
Consider two uncorrelated noise sources represepged T,,, _ 1 Ropt + Ropa
4Ropt1 4Ropt

1
noise networks having parametegs Temini, Yopr1 2NAd, Teminz, 0Ty O _§+
Yopze We wish to find the noise parameters for thesaltoed
noise networks, in particular the combined noiseetation
parameterg for the two noise sources. The problem can be +,B[i—1+ Ropt +MJ (32)
simplified by applying simultaneous lossless input q, 2 4R, 4R,
transformation, with no loss of generality sirgpand Ty, are
invariant. In the reflection coefficient plane ($mchart), the Lastly, derivatives of (27) and (28) with respeotR. are
result of this tr.ansforma.ltlon |epf[|mum source |mpedancesequated, and &, = Ry, We obtain
Roptr @and Rypr With combinedR,, in between, all located on
the real line. (

To determinegy, we evaluate noise equations in the form of
(23) for the two individual sources and their conation. The

Rz Ropt ]
Ropt RoptZ

equations may be evaluated at source impedancasarg on (33)

the Smith chart complex reflection coefficient marut for qlTeminl(a _a]
simplicity we choose to evaluate sturce impedancessRn

the real line with noise SWRBJRyp1, Ry/Ropz, @and RyRypy,
respectively. Using (23), we thus have

ol

Substituting (31) and (32) into (33) and reducimglds the
following equation for the combined parameter of two
uncorrelated sources:

O Teming + O Termint R + O Temina Ropa

T,=T, . —
el eminl 2 4R0pt1 4R5

(25)
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1/2 q
1#_1%@_1)}[{#} RE
a |a 2 a, 2)| [(a+pB)1+pa) 2

The condition we seek to provegs g, < 2. Sincen > 0 and
S > 0 in (34), at least one @f or g, > 2 is required for the
product term to be negative and giye> 2. This proves that
g1, 92 < 2 is a sufficient condition for combiney< 2 of two
uncorrelated sources. The proof is extended to rhitrary
number of sources by induction. A third uncorredas®urce
having noise network parameteg < 2 is added to the
combined source having < 2. These meet the conditions

<2

Combined g-Parameter

proven for two sources and thus form another coetbin 0
network withq < 2. This completes the proof that a two-port 1E+40 1E+1 1E+2 1E+3 1E+4 1E+45
network comprising an arbitrary number of mutually Separation Ratio

uncorrelated sources or sets of sources, eachdhqwr, has
an upper bound of noise correlation paramgter2. an

An overview of theg-parameter behavior when sources
combine is most readily seen by plotting (34). Figgshows a
family of curves with strength rati as the parameter.
Inspection of (24) shows thAtis the relative available power 5
of the two sources. When the power level of onerc®u
dominates, we see thaiapproaches the value of that source a:
an upper or lower limit. Extreme values @f(maximum or
minimum) occur at: = 1. As the separation ratioincreases,
the two sourcesdecorrelate and q approaches 2. This
decorrelation occurs because at laig@oise voltages, from
one source dominates while uncorrelated noise cuiyérom 1
the other source is dominant. Large available powe
differences between sources require greater sémarédr
decorrelation.

Fig. 8 plots theg parameter for equal strength sources, i.e.
with g = 1, the condition of greatest source interactibhis Fig. 8. Combined correlation of two uncorrelatedirses with equal source
family of curves hasy-g, pair values as the parameter. Whegtrengths = 1 and parametey, - 6.

0: = gy, the extreme value at= 1 isq =q; = ¢ (true also for
any f). Several unequal;-g, values are plotted, and of
particular interest are theosd-and 2« cases. The first case 1-
oo represents single physical sources having fulitpesand
negative correlation, respectively. The combirpdalue of
these is 2 for alk, and demonstrates that the conditipng, <

2 is not necessary far< 2. The second cases2combines a

Fig. 7. Combined correlation of two uncorrelatedrses withgy = 1,02 = 5,
d paramete#, the source strength ratio.

Combined g-Parameter
w

1E+0 1E+1 1E+2 1E+3 1E+4 1E+5
Separation Ratio

decorrelated group of physical sources with a simiysical 12
source having full negative correlation. Here, toenbinedq 10
is maximumg = 4 ata = 1, and quickly decorrelates towayd
= 2 as separation increases. 8
Settingg = 2 andg = 1 in (34) and solving fog, say, we %

obtain theq = 2 boundary for equal strength uncorrelatec g 61
sources Tl

1oL (35) ’

. 4, 0

1.0 1.2 14 1.6 1.8 2.0

The boundaryy;-a, pair values givel = 2 for all separation. gl value

This curve is plotted in Fig. 9 and emphasizes @agan that
the restrictive conditiony;, g, < 2 is not required for combined
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Fig. 9. Boundary of combined = 2 for two equal-strength uncorrelated
sources. Below the boundary curve, the and g, source values give

combinedy < 2. Output circuit noise temperature contributiorRgfis

The above examples indicate how physical sourcea in T =T_z_ (37)
noisy two-port network combine to gige< 2. Suppose a two- 2 G,
port contains a majority of physical sources wjtk 1 and a
small number of sources with negative correlation. The e see that noise temperature contribufigris minimized
general source conditiog < 2 does not hold. However, if by a large value of source resistarRe— « that prevents
strengths of the negative sources do not exceesethb an noise current at the input. On the other hand entsimperature
equal number of positive sources, then we havephirs with  contributionT,, is minimized by power match at the input with
g <2 and itis known immediately that< 2 for the entire two- R, = 1 Q. The large separation ratio of these optimum ssurc
port network. In the following section, we will uskese resistance values results in decorrelation and ouely = 2.
physical source combining properties and an adiix@port Thus, we state the following network principle:
decorrelation property to provg =~ 2 for any low-noise  Opposing input and output optimum source conditiohs
amplifier. power mismatch and power match, respectively, is th
C. Correlation Parameter of Low-Noise Amplifier fundamental reason forg2 in any low-noise amplifier. -
The network conditions that define a low-noise afigpl

An amplifier device contains a collection lofcal phyS|caI_ and lead to this property are as follows. Firseré¢hmust be
noise sourcesthat are mutually uncorrelated. Thus, noisé

. . . Substantially no dissipative losses preceding thputi
sources of the physical electrical network reprieg@m of an rantiatly P . P g the
o : termination of the basic amplifier network. Thesases, of
amplifier device are mutually uncorrelated. Each tése . . .
S ) : course, increase noise temperature, but also fbeceptimum
individual noise sources can be represented bysae metwork o
. . : : source toward the power match condition ané 1. (The
having eitherq = 1 org = . We now identify the network latter is easily seen by considering the limitiragse of large
conditions that constitute dow-noise amplifier and the y y g 9

. . attenuation, or by amplifier simulation with shuasistor loss
accompanying network property that forces decaticeiaof . y amp ", 5 .
S . at the input.) The second condition necessary dar-roise
individual noise sources.

amplifier is sufficient unilateral gain to overcortige output

i temperaturd,.
' > We can find the quantitative conditions that defanéow-
- - noise amplifier from the noise temperature of thasit
amplifier network. The noise parameters of the outpise
source are
10 < 10
R .
s § T1 ; ¢ V4uU iy § T d, =1 (38)
- - T.
Teminz :UZ (39)
Fig. 10. Basic unilateral two-port amplifier witlource resistance connected
at the input. Ropz = Ry (40)

The amplifier noise temperature is the sum of inpaise
contribution (36) and output noise contribution tem in the
form of (27) by using (38)—(40).

Consider the basic unilateral two-port shown in.Fl®
having input and output termination®, = R, = 1 Q,
respectively, and controlled-source current gaimu . The
input terminationR; is passive with thermal noise determined TR T, TR TR
by its physical temperatur€. The output terminatiofR, of T, = R +5 4U_R1+m
the active device under nonequilibrium conditiors taermal s s
noise determined bgquivalentphysical temperaturg, >> T;. _ o ) )
The input circuit contribution ofR, to amplifier noise Differentiating (41) with respect t& and equating to zero, we
temperature is found by equating input terminatiomise obtain the optimum source resistance relation
voltage to that of source resistanBge at temperaturely,

(41)

which gives R vz
g opt :(4UT1 +1j . (42)
- R 2
Ty = 1Ry . (36)
R According to (36),R,: >> R, is required for a low-noise
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amplifier. From (42), we therefore have D. g-Parameter of Low-Noise HEMT Device

Certainly, in the limit of physical temperatuile = 0, the
basic amplifier of Fig. 10 hag= 1. However, the effect of the
fundamental input/output decorrelation propertyasy strong,
so that temperature much lower than typical cryag to 20
SinceT, >> T, for an active device, a very large unilateral gaiff 1S necessary to loweq significantly from its room
U is required for low-noise amplification. temperature value. This can be demenstrated usoent low-

To proveq = 2 for a low-noise amplifier, we find the mean-N0iS€ HEMT device models at ambient temperatures0oK
and 300 K [15]. The device model is shown in Fid. 1
Element values were obtained by fitting measureglidier
noise temperature and gain data over 2—10 GHzetadvice
model integrated in a calibrated model of the afiapli (Note

T
U >>-2 (43)

1

squared values of input and output noise networkrces,
respectively, given by

52 —
€ = 4KT,R,B (44) that we have omitted parasitic elements at the gadedrain of
~ the model for simplicity sincg is invariant to them.) Fig. 12
i5=0 (45) shows computed parameter for the low-noise device network
of Fig. 11. The measured low-noise device confiansmall
_, _4kT,RB difference ing at 10 K and 300 K in accordance with network
€2 T (46) theory presented here.
204
2 - 4kT,B . (47) D (170)
4UR, N
5 34 33 13
(2.2) (37) (25) (0.7)
Rearranging (43), we have the inequality >> T.,/4U. —\MA——] W\ ANN—e
Applying this inequality to (44) and (46) shows ttha gate 132 Drain
g% >>g’. When the input and output noise networks are (138) (D L
combined, the two significant sources are the uetatede,; 3.9 213 52 77,2800 K
and ip. Thus, the low-noise amplifier noise correlation (2:2) (176) | (46) | (91, 400K)
parameter ig| ~ 2 in the unilateral case.
Generally, a low-noise amplifier network contaiegdback 12

elements, intended or not, and like the amplifigautt circuit, ©.6) % Source

these are limited to small losses. In this casetume to the ¢

invariant equation (6) to proveg-parameter behavior.
Specifically, the right—hand side of this equatiena general Fig. 11. Low-noise HEMT device model at ambiemhperature 300 K (10
K) [15]. All resistor noise temperatures are ambiercept drain—source

invariant quantity that maintains anStant Yalumvvipplled resistor as shown. Units for resistance, capaatatransconductance, and
lossless feedback. When feedback is negative,gherdinator rms noise current density are, respectivelyfF, ms, fA/(Hz}2

gain quantity is reduced, yet must remain nearwydoita high-
gain amplifier. Similarly,Temin in the numerator is reduced, but
must remain near the value of invariaMTg)ni, for a high- '

gain amplifier according to the expression for minm noise g %,
measure given in Table . When feedback is positie¢h the '
denominator quantity anf.., increase, but cannot exceed the

upper bounds of unity andM{Tg)min, respectively. Thus, g 1o

feedback cannot changgin the numerator appreciably from w 14l

the nominal unilateral value of 2. This completes proof that ' :;EOKK
noise correlation parametgr= 2 for any high-gain low-noise 12l

amplifier device.

The simplicity of the foregoing proof fog = 2 with
feedback demonstrates the power of the networkrizng 2 4 6 8 10
equations. In the following Section IV, we will agause the
invariant equations to find a lower bound on thealue of a
high-gain cascade amplifier network. But first, wenclude F?g. 12. Computed] parameter of the low-noise HEMT device network of
Section Il with a look at the effect of amplifigshysical "9 11 atambienttemperatures of 10 K and 300 K.
operating temperature on tlievalue and a summary @f
parameter behavior for a low-noise HEMT device.

Frequency (GHz)

The network of Fig. 11, moreover, illustrates &k tpoints
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of analyses andj-parameter behavior discussed in Sectiongptimum (i.e., minimum noise temperature) infinikescade of

llI-B, C. The device includes several uncorrelapgdysical
noise sources. One of these sources, the souroasr
resistor, has individual = o, which means that it hdg,, = 0

at finite source impedancg;. All other device sources have
individual q = 1, except the special case of gate-terminal
resistor with a limiting value ofj = 2. Since the source-

terminal resistor is not the strongest noise soafdhe device,
it is known immediately that the overall combinedise

correlation parameter must bg < 2. The noise sources
decorrelate to ag value just under 2 according to the

input/output decorrelation property of low-noisevides. This
we see in Fig. 12 at 2 GHz, where input circuiskssare low
and unilateral gain is high. As frequency increagesasitic
input losses increase and unilateral gain decreapédly with
a 1/ f 2 variation, yet theq value falls slowly with these
frequency effects. Noise correlation parametéy in a sense a
measure of quality of a low-noise device. When dhealue
has fallen sufficiently from the ideal value of\e no longer
have a low-noise device.

V. CASCADE AMPLIFIER CHARACTERIZATION

In practice, ahigh-gain cascadeof many individual
amplifier stages is required to amplify very lowéésignals to
a usable power level for detection and processigce the
power added noise temperature of a cascade of anber is
identically equal to that of the individual ampgifi
independent of gain or gain order, we have forrieimum
noise temperature of a high-gain (infinite) cascade

Te'min = (MTO),min

=(MT,) (48)

min *
Here and following, primed variables represent adec
guantities. Optimum source admittance for the adesda that
which gives minimum power added noise temperattirthe
individual amplifier

AR

opt opt opt *

(49)

The superscript M” denotes optimum with respect to nois

measure and power added noise temperature. Eqsigdén
and (49) are well-known results stated by Haus Aleér [5]
in terms of noise measure.

System noise performance in a real environmentligest
to source admittance variations that affect receineise
temperature. It is of particular interest, therefaio know the
sensitivity of cascade noise temperature to souesétion,

identical amplifiers.
Invariant equation (6) written for the cascade is

r ] (q, - 1)T,2i
(MTO)min Tcmin :—1emn (50)
1_
G'

mi

In view of (48), and since all forward gains of tbascade
approach infinity, (50) reduces to
Tc'min

q =1+
(MTO)min

(51)
Now, lossless embedding of an arbitrary numberct¥ea two-
port devices to form a new two-port (e.g., cascae@vork)
reduces the number of ports and doesneaessarilypreserve
eigenvalues of the original two-port device [9].dther words,
constraints on the cascade network generally reisula
minimum cold load temperature greater, but neves lian
that of the constituent device. This is expressed the
inequality

Tc'min = "cmin * (52)
Applying (52) to (51), we have
T .
q=21l+—0—. (53)
(MTO)min

Equation (53) gives the lower bound of cascade enois
correlation parametery’ in terms of constituent device
invariants. It shows that cascade noise sensititatysource
admittance cannot be reduced by any lossless device
embedding. These results establish a fundamenti@rpence
constraint on high-gain detection and measuremasteiss.

B. Derivation of Cascade g-Parameter

Having found the lower bound, we now derive #wual
cascade noise correlation parameter, again in teofns

e

constituent amplifier invariants.

In addition to the cascade conditions (48) and,(#®re is
a required optimum cascade condition on amplifiatpot
admittance

YOUt =YM

opt *

(54)

and if the sensitivity can be minimized by apprafgidesign These relations are used to solvedorThe equations needed
of the individual amplifier stages. In this sectiame discuss are obtained from the correlation matrix relationeg by
cascade noise correlation paramefewhich defines cascade Hillorand and Russer [10, eq. (7)] for the cascedenection
sensitivity and completes cascade amplifier charastion. of two two-ports. In our case, a single amplififirs{ two-port)
is placed ahead of a high-gain cascade (secong®nd- In

A. Cascade g-Parameter Lower Bound o . ) ;
g the limit of infinite cascade stages, the correlatimatrix of

Here, we find the lower bound daf-parameter for the
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the resultant two-port is identically equal to tb&the second (53) is realized by simultaneous noise and powecimaf the

two-port. Therefore, we can write individual amplifier stages comprising an optimuascade.
Simultaneous noise and power match means that faanpli
C'=C+TC'T" (55) Minimum noise temperature and maximum availablen gai

occur at the same source admittance. It followsnfrihe

whereT andC are signal and noise matrices, respectively, efinition of My, (Table 1) that minimum power added noise
the single amplifier, given by (3) and (43’ is the noise temperature is also realized at thatl same sourpdttadce.
correlation matrix of the cascade, given by (4)hwirimed 1herefore, we have for such an amplifier
variables substituted.

After performing the matrix operations in (55) aggluating Yopt =Y0";l =Y0“p"l (62)
the resulting matrix elements, we have a systemfoof
equations with cascade unknowsis T'emin, aNdY'op = Glopt +

Temin
jB'opt Substituting from (48), (49), and (54), we obtfinthe (MTo) min = T (63)

cascade noise correlation parameter 1- =

(A=2)Tgmn _ 2k
241 % emin _ _
, (MT,),... G Gaopt = Grma- (64)
q-= (56)
1-G,,

The superscriptG” denotes optimum with respect to available
gain. According to the optimum cascade conditiod),(5
amplifiers having simultaneous noise and power maferate
in the cascade with conjugate match at the inpdt @utput
ports. In this case, the reverse power g&jp is equal to
reverse maximum available gain, and we have

where G, is reverse power gairof an individual amplifier,
defined as power delivered to the input terminatonided by
power entering the output port.

2
Y12

Y +Yop

opt

(57) 1/G
G - ms

" k+kE-1
Note that (56) can be evaluated by individual afigpli L )
quantities before the addition of an interstagewnsk Now, dividing (7) by MTo)min and rearranging, thg lower

generally required by (54) since all amplifier qtiges in (56) PouUnd can be expressed as
are invariant.

pr

(65)

Inspection of (56) shows thaf =~ 2 under the following 1+ Tornin —2- TeminD _ (66)
conditions typical of an individual low-noise anfi@r stage: (MTy) min (MT,) in @=2/G,,)
q=2 (58)  Using (63)—(65), we find the right-hand sides d8)(and (66)

identically equal, thereby proving the realizatiohq' lower

Torin = (MT) i (59) bound by simultaneous noise and power match.
We can summarize fundamental noise properties a&thie
2k by optimum cascade amplifier networks that include
—<<1 (60)  simultaneous noise and power match:
ms
G, <<1 (61) Ol 14 tmn (67)
o . (MTO)min
This is consistent with the general noise correfaparameter TH =(MT,).. (68)
principles of Section Ill which apply equally wetb an emn 0/ min
optimum low-noise cascade network.
i (MTO)min +Tcmin
C. Simultaneous Noise and Power Match N i :4—.|.0 : (69)

For best system performance, it is desirable tamike the
degradation of receiver noise temperature by solecg.,
antenna) impedance variation. Noise correlatiorampeaterq’
defines sensitivity of receiver noise temperatuvesburce
impedance variation. We now show that tfidower bound

Noise temperature equation (23) in this case besome
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values presented in the paper provide an estin@ate-ET
( devices. Bipolar transistor devices possess anrénhd&kC
network at the input that reducgslightly, compared to FETSs,

(s-p*

T = (MT,) -

min + [(MTO ) min + Tcmin ]

Thus, device invarianttMTg)min and Tmin, define minimum
sensitivity of noise temperature to source impedarariation
as well as minimum noise temperature of a high-gascade.

As we know, the minimum noise temperature giveies) 1
applies not only to a high-gain cascade, but atsa single
device at high gain by positive feedback. Likewise,the [2]

limits Gy — © and Temin — (MTg)min for a high-gain single
device, (6) shows that is the minimum given in (67). Noise (3]
equation (70) shows explicitly how both generakiriants of a
device define best possible noise temperature andce

impedance sensitivity performance of a high-gastey. 4l
(5]
V. CONCLUSION (6l
In this paper, we have extended the work of Hauk/edier
[5], [9] to provide a complete and unified theorf Imear [7]
noisy two-ports. Two general noise temperature @ow
invariants of noisy two-ports have been identiflEsdminimum [g]

power added noise temperature and minimum cold load
temperature. The first invariant defines minimumsgible

noise temperature of a high-gain cascade of indalidwo- |9
ports—the well-known noise measure relation. Initaid we
found that both general invariants combine to aefinnimum (10]
possible sensitivity of cascade noise temperataresdurce
impedance. No embedding applied to the individwal-port [11]
or to the cascade can lower this minimum sengjtivit was
shown that a high-gain cascade amplifier networkirta [12]
simultaneous minimum noise temperature and minimoise
temperature sensitivity is realized by simultanepaise and [13]
power match of the individual amplifier stages. iveoduced [14]
a two-port noise correlation parametgrthat determines
amplifier noise sensitivity to source impedanceqd ahowed [15]

thatq = 2 for any low-noise device or cascade. Thus, noise
temperature sensitivity is approximately fixed asahnot be
improved by amplifier or semiconductor device desig
Associated with the general noise invariants of -paot
networks are two invariant equations that relatevaek noise
parameter invariants to gain and stability sigmalariants.
These are the hallmark of a “unified” network notkeory.
The invariant equations and tlaepriori knowledge of noise
correlation parameteg = 2 can provide useful information to
application of two-port characterization in manyeas of
interest. For example, in the contemporary fieldvdeband
active receiving arrays, the active (source) impeda
presented to a low-noise amplifier can vary sigaffitly with
frequency and scan angle. This is particularly irtgod for
systems in which receiver noise dominates, notablyadio
astronomy, and here, the network conditigrn~ 2 can be
applied to system design and optimization methdéar
example,q = 2 mustbe applied in [16], [17] to obtain valid
results.) For noise measurement systems and naisanpter
extraction,q = 2 in effect eliminates one variable. HEMjT

[16]

[17]
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as explained by the network theory.
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TABLE |
KNOWN INVARIANTS OF LINEAR NOISY TWO-PORTS

Symbol Name Expression Type

|y21 - y12|2

U unilateral gain
4Rq y11] Re[yzz] -Rg Yio Rd y21])

general

- . F-1
Mmin minimum noise measure (mjmm general
Temin minimum noise temperature noise parameter special
G maximum available gain — O special
ma g K+ m p
2
G . t d . |y21| Gopt ; |
aopt associated gain 2 special
|Y11 +Y0pt Re[yzz] - Rd: Y12 Y21(y1D1 +Yo?)t)]
Gms maximum stable gain Yo special
Yio
2Rey,, Ry, ~RE Y1, Y]
k stability factor = 2 22 special

|Y12 y21|
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TABLE Il

NEW INVARIANTS OF LINEAR NOISY TWO-PORTS

Symbol Name Expression Type
minimum power added  Temin |:\/4(q_1)(1_1/Gmi) +N° +A}
(MTo)min noise temperature general
21-1/G,,)
minimum cold load Termin |:\/4(q_1)(1_1/Gmi) + 4 ‘A]
Tomin temperature general
21-1/G,;)
. . 4RnGoptT0 .
q noise correlation parameter S special
(q - 2)Temin 2k
, cascade noise correlation 2+ (MT,) _Gi .
q parameter 0/ min ms special
1-G,,
Gms
Gmi maximum invariant gain ok _ 1 special
2
Gpr reverse power gain LM special
yll +Yopt
. minimum cascade noise +_ Temin eneral
4 min correlation parameter (MTy) min g
, minimum cascade (MTo) min * Tomin
N'min B —— general

N-parameter

47,
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