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Abstract—Network noise invariants are introduced that lead to 

improved noise characterization and a complete theory of linear 
noisy two-ports. Minimum power added noise temperature and 
minimum cold load temperature are identified as network noise 
invariants under lossless embedding. Associated invariant 
equations provide explicit relations between all known and new 
network invariants. From these equations, an invariant under 
lossless embedding is identified that defines network noise–gain 
coupling in the most basic terms of noise correlation, minimum 
noise temperature, and complex nonreciprocal gain. A noise 
correlation parameter q is formally introduced that is invariant to 
lossless input and/or output transformation. Conditions and 
bounds are established, and it is shown that q ≈ 2 for low-noise 
active devices. An exact expression for the q parameter of a 
minimum noise cascade network is given in terms of constituent 
device invariants. From a systems point of view, the cascade q 
parameter represents source impedance noise sensitivity. A lower 
bound on cascade q is determined by device invariants minimum 
power added noise temperature and minimum cold load 
temperature. It is shown that the cascade q lower bound is 
realized by simultaneous noise and power match. 
 

Index Terms—Active cold load, low-noise amplifier (LNA), 
noise measure, noise parameter, noise temperature, noise theory. 
 

I. INTRODUCTION 

N INVARIANT quantity identifies a fundamental 
property of a physical system that is unaltered by mere 

changes to that system’s environment. Invariants often serve as 
a figure of merit or benchmark value for comparing physical 
systems, verifying computations or measurements, or 
establishing theoretical performance bounds. They can also 
provide insight and better understanding of the operating 
principles and behavior for the system to which they apply. 
The purpose of this paper is to identify and discuss several 
new invariants of linear noisy two-port networks, leading to a 
unified noise theory. 

The first two-port invariant came in 1954 when Mason [1] 
deduced an invariant network property under lossless 
embedding and identified it as maximum unilateral power gain 
U. A discussion of unilateral gain and invariance can be found 
in a 1992 tutorial review by Gupta [2]. In 1962, Rollett [3] 
introduced an invariant stability factor k and discussed 
important invariant power gains, maximum available gain Gma 
and maximum stable gain Gms. 
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In order to describe the behavior of a linear two-port 
containing internal noise sources, Rothe and Dahlke [4] 
introduced the “Theory of Noisy Fourpoles” in 1956 which 
showed that four noise parameters are required. One such set 
of noise parameters consists of: 1) minimum noise temperature 
Temin; 2) optimum source conductance Gopt; 3) optimum source 
susceptance Bopt; and 4) noise resistance Rn. In 1958, following 
shortly after the works of Mason and Rothe and Dahlke, Haus 
and Adler [5] published the “Optimum Noise Performance of 
Linear Amplifiers,” which identified a two-port noise invariant 
under lossless embedding called minimum noise measure Mmin.  
Unlike minimum noise temperature Temin, this amplifier figure 
of merit accounts for gain and noise in a way that does not 
change with feedback. Mmin defines the best possible noise 
performance for a high-gain cascade of identical amplifiers. 

Since the discovery of signal invariant U and noise invariant 
Mmin, there have been two fundamental additions to two-port 
noise characterization. First, it was shown by Lange [6] in 
1967 that the product RnGopt is invariant under the more 
restrictive condition of lossless input transformation. He 
proposed the parameter N = RnGopt to replace Rn, recognizing 
that the invariant property of N makes it a more fundamental 
quantity than Rn. Secondly, Wiatr [7], [8] first observed in 
1980 that the relation 4NT0/Temin ≥ 1 must be satisfied to 
represent noise of a physical two-port. (T0 is the reference 
temperature 290 K.) Thus, a theoretical bound was established 
on the relative value of two noise parameters, the ratio of N 
and Temin. 

 In this paper, we introduce new network invariants, 
physical interpretations, and invariant relations that form a 
complete and unified two-port noise theory. Section II of the 
paper discusses the two independent noise invariants under 
lossless embedding that relate all other noise, gain, and 
stability invariants of the two-port. Physical interpretations of 
these two invariants provide a deeper understanding of 
network operation than do noise temperature or noise measure. 
In Section III, we reveal the significance and true nature of the 
quantity 4NT0/Temin by formal introduction as noise correlation 
parameter q. We will prove the two sufficient conditions taken 
together for q ≤ 2, irrespective of network topology or number 
of noise sources, and furthermore show that q ≈ 2 for any low-
noise amplifier device. Section IV applies new knowledge of 
two-port invariants to the high-gain cascade low-noise 
amplifier case. We derive the lower bound of cascade q 
parameter, expressed in terms of constituent amplifier general 
invariants, then show that the lower bound is realized by 
simultaneous noise and power match of the individual 
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amplifiers. Section V concludes the paper with a summary and 
discussion of noise theory results. 

 

II.  NETWORK NOISE INVARIANTS 

There are two independent noise power invariants 
(expressed as temperature) associated with a two-port network. 
The first of these that we will examine is simply related to 
minimum noise measure. However, the physical interpretation 
of this invariant is much more revealing because it describes 
performance of an individual amplifier rather than a high-gain 
cascade. In addition, it explains clearly why noise temperature 
fails to describe fundamental amplifier noise performance. 

A. Power Added Noise Temperature 

The invariant we introduce is minimum power added noise 
temperature (MT0)min. To understand the physical significance 
of this interpretation, consider the maser amplifier power flow 
diagram of Fig. 1. Available input signal power to the maser is 
Si. Maser output consists of amplified signal GaSi plus added 
maser noise No. With a depleted lower energy state, no signal 
power is absorbed and there is total incident signal reflection 
at the maser port. The output signal is partitioned into two 
parts: 1) reflected input signal power Si; and 2) signal power 
added by the stimulated emission process, (Ga − 1)Si. Only 
added signal and noise powers generated by internal maser 
processes determine its true noise performance. Indeed, for 
any amplifier, available input signal power must be excluded 
from consideration. Inclusion of available input signal power 
is why traditional noise temperature fails to define 
fundamental amplifier noise performance. 

Power added noise temperature MT0 is easily obtained by 
referring output noise to the input according to No/(Ga − 1) and 
applying the definition of noise measure. We retain the noise 
measure M notation to show explicitly its relation to power 
added noise temperature and to acknowledge the work of Haus 
and Adler. Lastly, it is easy to show that power added noise 
temperature is preserved for any cascade, independent of gain 
or gain order. Thus, optimum high-gain cascade noise 
performance is simply a consequence of the individual 
amplifier invariant. 

B. Cold Load Temperature 

We identify minimum cold load temperature Tcmin as the 
second two-port invariant under lossless embedding. It is the 
best possible noise performance of a two-port network 
operated as an active cold load. Fig. 2 shows an active two-
port embedded in a passive lossless four-port network, which 
is then connected to a passive lossless three-port network. 
Invariance means that for all possible four-port embeddings, a 
three-port network can be found that gives minimum available 
output noise power kTcminB, where k is Boltzmann’s constant 
and B is noise bandwidth. Note that we are interested only in 
active two-ports here since the output noise of any passive 
one-port network with loss is defined by its physical 
temperature. 

 
 
 
 
 
 
 
 
Fig. 1.  Maser amplifier power flow diagram. This type of amplifier readily 
shows why added signal and noise power components define true noise 
performance—they alone result from internal device processes. 

 
 
 
 
 
 
 
 
 
 

 
 

Fig. 2.  Active cold load diagram illustrating the invariance of minimum cold 
load temperature under lossless embedding. 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3.  Invariant conditions. (a) The general condition of lossless embedding 
includes feedback and defines fundamental invariance. (b) The special 
condition of lossless input/output transformation is simple impedance 
transformation at each port. 

 
In view of Fig. 2, the invariance of minimum cold load 

temperature may seem obvious. However, the result is less 
obvious when the active network is generalized to an arbitrary 
number of active two-port devices. In a later publication, Haus 
and Adler [9] proved that eigenvalues are preserved, and thus 
also Tcmin, for n arbitrary active devices in a 4n-port lossless 
embedding. This aspect of their work has received little 
attention, probably because the focus has been on amplifier 
noise performance. The proof will be important when we later 
derive a noise parameter lower bound for optimum cascade 
networks. A practical consequence is that active cold load 
performance cannot be improved by employing more low-
noise devices. 

C. Invariant Conditions 

It is important to understand and distinguish between two 
different conditions of two-port invariants. In Fig. 3, lossless 
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embedding comprises a passive lossless four-port connection 
to the two-port, whereas lossless input/output transformation 
connects separate uncoupled passive lossless two-port 
networks to the two-port. Lossless embedding includes 
feedback and is the more general condition. Therefore, an 
invariant subject to lossless embedding constitutes a more 
fundamental physical property of the two-port. 

The tables below summarize noise, gain, and stability 
invariants of linear noisy two-ports discussed in this paper. 
Known invariants are shown in Table I and new invariants 
introduced are given in Table II. Expressions are in admittance 
parameter form. The invariant type is termed general for those 
subject to lossless embedding and special in the case of 
lossless input/output transformation. The condition will now 
be clear when the unmodified term “invariant” is used in the 
paper with these various quantities. 

D. Invariant Equations 

A modified form of the characteristic noise matrix given by 
Haus and Adler [5, eq. (41)] is 
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2
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with permutation matrix P, general-circuit matrix T, and noise 
correlation matrix C defined by 
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The symbol “*” means complex conjugate of a variable and 
the superscript “+” denotes conjugate transpose of a matrix. 
With C defined this way, the eigenvalues of characteristic 
noise matrix N are the invariants (MT0)min and −Tcmin. The 
relation of noise correlation matrix C to noise matrices of 
Haus and Adler [5, eq. (24)] and Hillbrand and Russer [10, eq. 
(11)] is, respectively, 
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 (There are two errors in the Hillbrand and Russer paper’s 
correlation matrix equation (11): 1) Yopt and Y*opt should be 
reversed [11]; and 2) absolute temperature T should be 

reference temperature T0.) 
Invariant equations are obtained by equating the product 

and sum of eigenvalues to determinant N and trace N, 
respectively. Initially, the equations are in terms of signal and 
noise parameters contained in (3) and (4). From these 
expressions, all invariant quantities are identified that relate to 
the general invariants (MT0)min and Tcmin. The invariant 
equations are shown here in final form. 
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The introduced maximum invariant power gain Gmi is 

similar to well-known maximum available gain Gma, and nearly 
identical to Kotzebue’s maximally efficient power gain Gme 
[12]. Gmi is in fact closely related to the U-function, and to the 
defining condition of two-port activity and passivity [13, pp. 
135–141]. Gaopt is available gain at minimum noise 
temperature, known as associated gain. Analytic expressions 
for all invariants in the above equations are given in Tables I 
and II. 

E. Noise–Gain Coupling 

As suggested above, the isolated gain Gmi appearing in the 
invariant equations does indeed have a special significance. 
Consider that Gmi is the only signal quantity present in (6). The 
right-hand side of (6) is itself an invariant quantity under 
lossless embedding. We thus have an expression of 
fundamental two-port noise–gain interaction with varying 
embedding circuit conditions. The denominator may be written 
as the product of a general invariant and a special invariant, 
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Substituting (9) into (6) and collecting general invariants on 
the left-hand side, we have 
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This is two-port noise–gain coupling in its most basic form. 
The right-hand side of (10) contains noise parameters q and 
Temin, and the inverse of signal quantity y21/y12 known as 
complex nonreciprocal gain [13, pp. 175–176]. 

For a high-gain active two-port device, (MT0)min ≈ Temin and 
Gmi >> 1 so that (6) can be approximated as 

 
                                   minmin )1( ec TqT −≈ . (11) 

 
When the device is also low-noise, we expect that q cannot 
approach unity since that would imply very low active cold 
load temperature—intuitively, an unlikely physical possibility. 
In the following section, we find this is indeed correct as an 
investigation of the q-parameter is undertaken. 

 

III.  NOISE CORRELATION PARAMETER 

It is evident from invariant equation (10) that the q-
parameter plays a fundamental role in two-port network 
characterization. It is the remaining parameter of the network 
invariant equations to be understood in terms of physical 
meaning. We begin with the formal introduction of noise 
correlation parameter q defined by known noise parameters as 
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According to (12), q is invariant since N = RnGopt and Temin are 
invariant. From (6), q < 1 is not allowed to give negative 
invariant temperatures of an active network. Furthermore, 
limitations on the cold load temperature (11) indicate that q 
cannot approach unity for a high-gain low-noise device. 

In this section, we will continue to develop a complete 
physical understanding of the q-parameter. We then address a 
broad class of two-port networks, the important case of low-
noise active devices. The properties of a low-noise active 
network will be identified that lead to a constraint on the q-
parameter value. In fact, we will show that q ≈ 2 for any low-
noise amplifier device. 

A. Noise Characterization 

Following Engberg and Larsen [14], the noise properties of 
a linear noisy two-port can be characterized by a noise network 
as shown in Fig. 4. The noise network consists of a noise 
voltage source en and a noise current source partitioned into 
correlated and uncorrelated parts in = Yγen + iu, respectively. 
The correlation admittance Yγ and mean-squared source 
values are defined by the following, which include noise 
resistance Rn and noise conductance Gn. 
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by 
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Fig. 4.  Chain representation of linear noisy two-port with partially correlated 
sources en and in and general-circuit matrix T. 

 
 

Substituting (16) into the defining equation (12) we have 
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Equation (19) expresses the correlation nature of q. The 
quantity Gγ/Gopt is the correlation coefficient between noise 
sources en and in when Bγ = 0 (otherwise the correlation is 
complex-valued). Since Gn ≥ 0 and Rn ≥ 0, we can see from 
(17) that the range of this real-valued and invariant correlation 
quantity is 
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The resulting range of noise correlation parameter q is 
described in Fig. 5. Note the three important cases of q value. 
When Gγ = 0, the noise sources en and in are uncorrelated and 
q = 2. When Gn = 0, we have either full positive correlation 
with q = 1 or full negative correlation with q = ∞. Fully 
correlated noise sources en and in represent a single physical 
noise source within a two-port network. Practical amplifier 
devices contain physical sources having both positive and 
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negative correlation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5.  Range of q-parameter values with correlation of noise network 
sources en and in. 

 
Referring again to Fig. 4, the effective input noise 

temperature Te of an active two-port is a function of source 
admittance Ys = Gs + jBs according to the well-known relation 
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with optimum source admittance Yopt = Gopt + jBopt. Here we 
digress briefly to comment regarding the interpretation of this 
equation. It is common to find in the literature reference to Rn 
as a “sensitivity factor” based on its appearance in (21). This 
has led, for example, to semiconductor device design for low 
Rn in order to reduce receiver noise temperature variation due 
to antenna impedance change. Neither of these ideas is correct, 
however. The problem is that the form of (21) does not 
explicitly separate device noise characteristics from impedance 
mismatch effects. The Rn parameter is not invariant, but 
subject to input transformation and superficial semiconductor 
device treatment, neither of which affect two-port impedance 
sensitivity. Using (12) to substitute for Rn in (21), we obtain 
the following form with device noise and mismatch effects 
separated, as evidenced by the symmetry in admittance 
quantities. 
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Clearly, it is noise correlation parameter q that defines 
sensitivity to impedance mismatch. Our anticipated result q ≈ 2 
for low-noise devices means that this value must be used for 
receiving system optimization and cannot be changed by 
semiconductor device design. 
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Fig. 6.  Noise temperature variation with source impedance showing effect of 
network correlation. The rms values of noise voltage en and noise current in 
are held constant for the three limiting cases of network q value. 

 
We now express (22) in a more convenient form and 

examine the effect of correlation on noise temperature in the 
three limiting cases q = 1, 2, and ∞. The noise equation in 
terms of standing-wave ratio (SWR) is 
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where S is the noise SWR of source admittance Ys with respect 
to optimum source admittance Yopt. If we normalize Temin to 
that of the uncorrelated q = 2 case, then qTemin = 4RnGoptT0 = 2 
for all cases. This is correct because we hold the rms values of 
noise voltage en and noise current in constant, and therefore Rn 
and Gopt are constant according to (14), (15), and (17). Temin is 
determined by available noise power from the noise network at 
the noise-free network side in Fig. 4. 

Fig. 6 shows noise temperature comparison for the three 
limiting cases of full positive correlation (q = 1), uncorrelated 
(q = 2), and full negative correlation (q = ∞). The most 
important feature of these results is that the noise temperature 
difference between adjacent plotted cases is a constant value 
of uncorrelated Temin over all SWR. Consequently, noise 
temperature Te is nearly independent of q value at high SWR, 
where large available noise power of one source, either en or 
in, dominates. This fact will be important when we analyze 
two-ports having multiple physical noise sources. 

The influence of q is greatest for the noise matched 
condition Ys = Yopt where S = 1. The relative values of Temin at 
S = 1 suggest a physical definition of q in terms of available 
noise power. Applying the factor kB to (12) and substituting 
(14) gives 
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Thus, q is the ratio of minimum available power from the 
noise network at full positive correlation to actual minimum 
available power. 

The limiting case of full negative correlation (q = ∞) 
deserves comment here since it has Temin = 0. A low-noise 
amplifier operating at this condition or near to it would be very 
sensitive to source impedance, with noise temperature reaching 
many times the matched value when S = 2, for example. (In 
Fig. 6, noise is 25 percent of the uncorrelated Temin when S = 
2.) The situation is identical to that of an active cold load with 
q = 1 and a similar comment (Section II-E) applies: noise 
levels observed in unmatched amplifiers would imply a very 
low and physically unreasonable Temin (e.g., below quantum 
limit) if the q value is large. 

So if the q value of a low-noise amplifier cannot approach 
the limits of q = 1 or q = ∞, then what must the value of q be? 
With the foregoing noise characterization background in place, 
we are ready to answer that question and begin the details of 
proof for q ≈ 2. 

B. Network Conditions for q ≤ 2 

We now prove the general network conditions for q ≤ 2 that 
serve as a useful reference point for the low-noise amplifier 
case. The two conditions for q ≤ 2, irrespective of network 
topology or number of noise sources, are as follows: 
1) All noise sources within the network are mutually 

uncorrelated. 
2) Each noise source within the network can be represented 

by a noise network having q ≤ 2. 
“Noise source” here can be a single physical source within the 
network or a subset of physical sources represented by a noise 
network. As we shall see, these conditions are sufficient, but 
not necessary for q ≤ 2. 

Consider two uncorrelated noise sources represented by 
noise networks having parameters q1, Temin1, Yopt1 and q2, Temin2, 
Yopt2. We wish to find the noise parameters for these combined 
noise networks, in particular the combined noise correlation 
parameter q for the two noise sources. The problem can be 
simplified by applying simultaneous lossless input 
transformation, with no loss of generality since q and Temin are 
invariant. In the reflection coefficient plane (Smith chart), the 
result of this transformation is optimum source impedances 
Ropt1 and Ropt2 with combined Ropt in between, all located on 
the real line. 

To determine q, we evaluate noise equations in the form of 
(23) for the two individual sources and their combination. The 
equations may be evaluated at source impedances anywhere on 
the Smith chart complex reflection coefficient plane, but for 
simplicity we choose to evaluate at source impedances Rs on 
the real line with noise SWRs Rs/Ropt1, Rs/Ropt2, and Rs/Ropt, 
respectively. Using (23), we thus have 
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Since the two individual noise sources are uncorrelated, their 
noise temperatures add and we can also write 
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Equations (25)–(28) are solved for combined q in terms of 

q1, q2, source separation ratio α, and source strength ratio β, 
where 
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The solution proceeds by substituting (25) and (26) into (28), 
differentiating with respect to Rs, and equating to zero to give 
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Then, setting Rs = Ropt in (25) and (26), we obtain via (28) 
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Lastly, derivatives of (27) and (28) with respect to Rs are 
equated, and at Rs = Ropt2 we obtain 
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Substituting (31) and (32) into (33) and reducing yields the 

following equation for the combined q parameter of two 
uncorrelated sources: 
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The condition we seek to prove is q1, q2 ≤ 2. Since α > 0 and 

β > 0 in (34), at least one of q1 or q2 > 2 is required for the 
product term to be negative and give q > 2. This proves that 
q1, q2 ≤ 2 is a sufficient condition for combined q ≤ 2 of two 
uncorrelated sources. The proof is extended to an arbitrary 
number of sources by induction. A third uncorrelated source 
having noise network parameter q3 ≤ 2 is added to the 
combined source having q ≤ 2. These meet the conditions 
proven for two sources and thus form another combined 
network with q ≤ 2. This completes the proof that a two-port 
network comprising an arbitrary number of mutually 
uncorrelated sources or sets of sources, each having q ≤ 2, has 
an upper bound of noise correlation parameter q = 2. 

An overview of the q-parameter behavior when sources 
combine is most readily seen by plotting (34). Fig. 7 shows a 
family of curves with strength ratio β as the parameter. 
Inspection of (24) shows that β is the relative available power 
of the two sources. When the power level of one source 
dominates, we see that q approaches the value of that source as 
an upper or lower limit. Extreme values of q (maximum or 
minimum) occur at α = 1. As the separation ratio α increases, 
the two sources decorrelate and q approaches 2. This 
decorrelation occurs because at large α, noise voltage en from 
one source dominates while uncorrelated noise current in from 
the other source is dominant. Large available power 
differences between sources require greater separation for 
decorrelation. 

Fig. 8 plots the q parameter for equal strength sources, i.e., 
with β = 1, the condition of greatest source interaction. This 
family of curves has q1-q2 pair values as the parameter. When 
q1 = q2, the extreme value at α = 1 is q = q1 = q2 (true also for 
any β). Several unequal q1-q2 values are plotted, and of 
particular interest are the 1-∞ and 2-∞ cases. The first case 1-
∞ represents single physical sources having full positive and 
negative correlation, respectively. The combined q value of 
these is 2 for all α, and demonstrates that the condition q1, q2 ≤ 
2 is not necessary for q ≤ 2. The second case 2-∞ combines a 
decorrelated group of physical sources with a single physical 
source having full negative correlation. Here, the combined q 
is maximum q = 4 at α = 1, and quickly decorrelates toward q 
= 2 as separation increases. 

Setting q = 2 and β = 1 in (34) and solving for q2 say, we 
obtain the q = 2 boundary for equal strength uncorrelated 
sources 
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qq
−= . (35) 

 
The boundary q1-q2 pair values give q = 2 for all separation α. 
This curve is plotted in Fig. 9 and emphasizes once again that 
the restrictive condition q1, q2 ≤ 2 is not required for combined 

q ≤ 2. 
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Fig. 7.  Combined correlation of two uncorrelated sources with q1 = 1, q2 = 5, 
and parameter β, the source strength ratio. 
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Fig. 9.  Boundary of combined q = 2 for two equal-strength uncorrelated 
sources. Below the boundary curve, the q1 and q2 source values give 
combined q < 2. 

 
The above examples indicate how physical sources in a 

noisy two-port network combine to give q ≤ 2. Suppose a two-
port contains a majority of physical sources with q = 1 and a 
small number of sources with negative correlation q = ∞. The 
general source condition q ≤ 2 does not hold. However, if 
strengths of the negative sources do not exceed those of an 
equal number of positive sources, then we have 1-∞ pairs with 
q ≤ 2 and it is known immediately that q ≤ 2 for the entire two-
port network. In the following section, we will use these 
physical source combining properties and an active two-port 
decorrelation property to prove q ≈ 2 for any low-noise 
amplifier. 

C. Correlation Parameter of Low-Noise Amplifier 

An amplifier device contains a collection of local physical 
noise sources that are mutually uncorrelated. Thus, noise 
sources of the physical electrical network representation of an 
amplifier device are mutually uncorrelated. Each of these 
individual noise sources can be represented by a noise network 
having either q = 1 or q = ∞. We now identify the network 
conditions that constitute a low-noise amplifier and the 
accompanying network property that forces decorrelation of 
individual noise sources. 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 10.  Basic unilateral two-port amplifier with source resistance connected 
at the input. 

 
 

Consider the basic unilateral two-port shown in Fig. 10 
having input and output terminations R1 = R2 = 1 Ω, 
respectively, and controlled-source current gain U4 . The 

input termination R1 is passive with thermal noise determined 
by its physical temperature T1. The output termination R2 of 
the active device under nonequilibrium condition has thermal 
noise determined by equivalent physical temperature T2 >> T1. 
The input circuit contribution of R1 to amplifier noise 
temperature is found by equating input termination noise 
voltage to that of source resistance Rs at temperature Te1, 
which gives 

 

                                         
s

e R

RT
T 11

1 = . (36) 

 
Output circuit noise temperature contribution of R2 is 

 

                                          
a

e G

T
T 2

2 = . (37) 

 
We see that noise temperature contribution Te1 is minimized 

by a large value of source resistance Rs → ∞ that prevents 
noise current at the input. On the other hand, noise temperature 
contribution Te2 is minimized by power match at the input with 
Rs = 1 Ω. The large separation ratio of these optimum source 
resistance values results in decorrelation and combined q = 2. 
Thus, we state the following network principle: 

Opposing input and output optimum source conditions of 
power mismatch and power match, respectively, is the 
fundamental reason for q ≈ 2 in any low-noise amplifier. 

The network conditions that define a low-noise amplifier 
and lead to this property are as follows. First, there must be 
substantially no dissipative losses preceding the input 
termination of the basic amplifier network. These losses, of 
course, increase noise temperature, but also force the optimum 
source toward the power match condition and q = 1. (The 
latter is easily seen by considering the limiting case of large 
attenuation, or by amplifier simulation with shunt resistor loss 
at the input.) The second condition necessary for low-noise 
amplifier is sufficient unilateral gain to overcome the output 
temperature T2. 

We can find the quantitative conditions that define a low-
noise amplifier from the noise temperature of the basic 
amplifier network. The noise parameters of the output noise 
source are 

 
                                             12 =q  (38) 
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                                          1opt2 RR = . (40) 

 
The amplifier noise temperature is the sum of input noise 
contribution (36) and output noise contribution written in the 
form of (27) by using (38)–(40). 
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Differentiating (41) with respect to Rs and equating to zero, we 
obtain the optimum source resistance relation 
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According to (36), Ropt >> R1 is required for a low-noise 
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amplifier. From (42), we therefore have 
 

                                          
1

24
T

T
U >> . (43) 

 
Since T2 >> T1 for an active device, a very large unilateral gain 
U is required for low-noise amplification. 

To prove q ≈ 2 for a low-noise amplifier, we find the mean-
squared values of input and output noise network sources, 
respectively, given by 
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Rearranging (43), we have the inequality T1 >> T2/4U. 
Applying this inequality to (44) and (46) shows that 

2
2

2
1 nn ee >> . When the input and output noise networks are 

combined, the two significant sources are the uncorrelated en1 
and in2. Thus, the low-noise amplifier noise correlation 
parameter is q ≈ 2 in the unilateral case. 

Generally, a low-noise amplifier network contains feedback 
elements, intended or not, and like the amplifier input circuit, 
these are limited to small losses. In this case, we turn to the 
invariant equation (6) to prove q-parameter behavior. 
Specifically, the right-hand side of this equation is a general 
invariant quantity that maintains constant value with applied 
lossless feedback. When feedback is negative, the denominator 
gain quantity is reduced, yet must remain near unity for a high-
gain amplifier. Similarly, Temin in the numerator is reduced, but 
must remain near the value of invariant (MT0)min for a high-
gain amplifier according to the expression for minimum noise 
measure given in Table I. When feedback is positive, both the 
denominator quantity and Temin increase, but cannot exceed the 
upper bounds of unity and (MT0)min, respectively. Thus, 
feedback cannot change q in the numerator appreciably from 
the nominal unilateral value of 2. This completes the proof that 
noise correlation parameter q ≈ 2 for any high-gain low-noise 
amplifier device. 

The simplicity of the foregoing proof for q ≈ 2 with 
feedback demonstrates the power of the network invariant 
equations. In the following Section IV, we will again use the 
invariant equations to find a lower bound on the q value of a 
high-gain cascade amplifier network. But first, we conclude 
Section III with a look at the effect of amplifier physical 
operating temperature on the q value and a summary of q-
parameter behavior for a low-noise HEMT device. 

D. q-Parameter of Low-Noise HEMT Device 

Certainly, in the limit of physical temperature T1 = 0, the 
basic amplifier of Fig. 10 has q = 1. However, the effect of the 
fundamental input/output decorrelation property is very strong, 
so that temperature much lower than typical cryogenic 10 to 20 
K is necessary to lower q significantly from its room 
temperature value. This can be demonstrated using recent low-
noise HEMT device models at ambient temperatures of 10 K 
and 300 K [15]. The device model is shown in Fig. 11. 
Element values were obtained by fitting measured amplifier 
noise temperature and gain data over 2–10 GHz to the device 
model integrated in a calibrated model of the amplifier. (Note 
that we have omitted parasitic elements at the gate and drain of 
the model for simplicity since q is invariant to them.) Fig. 12 
shows computed q parameter for the low-noise device network 
of Fig. 11. The measured low-noise device confirms a small 
difference in q at 10 K and 300 K in accordance with network 
theory presented here. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 11.  Low-noise HEMT device model at ambient temperature 300 K (10 
K) [15]. All resistor noise temperatures are ambient except drain–source 
resistor as shown. Units for resistance, capacitance, transconductance, and 
rms noise current density are, respectively: Ω, fF, mS, fA/(Hz)1/2. 
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Fig. 12.  Computed q parameter of the low-noise HEMT device network of 
Fig. 11 at ambient temperatures of 10 K and 300 K. 
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of analyses and q-parameter behavior discussed in Sections 
III-B, C. The device includes several uncorrelated physical 
noise sources. One of these sources, the source-terminal 
resistor, has individual q = ∞, which means that it has Temin = 0 
at finite source impedance Zs. All other device sources have 
individual q = 1, except the special case of gate-terminal 
resistor with a limiting value of q = 2. Since the source-
terminal resistor is not the strongest noise source of the device, 
it is known immediately that the overall combined noise 
correlation parameter must be q ≤ 2. The noise sources 
decorrelate to a q value just under 2 according to the 
input/output decorrelation property of low-noise devices. This 
we see in Fig. 12 at 2 GHz, where input circuit losses are low 
and unilateral gain is high. As frequency increases, parasitic 
input losses increase and unilateral gain decreases rapidly with 
a 1 ⁄ f 2 variation, yet the q value falls slowly with these 
frequency effects. Noise correlation parameter q is in a sense a 
measure of quality of a low-noise device. When the q value 
has fallen sufficiently from the ideal value of 2, we no longer 
have a low-noise device. 

 

IV.  CASCADE AMPLIFIER CHARACTERIZATION 

In practice, a high-gain cascade of many individual 
amplifier stages is required to amplify very low-level signals to 
a usable power level for detection and processing. Since the 
power added noise temperature of a cascade of any number is 
identically equal to that of the individual amplifier, 
independent of gain or gain order, we have for the minimum 
noise temperature of a high-gain (infinite) cascade 

 
                            min0min0min )()( MTMTTe =′=′ . (48) 

 
Here and following, primed variables represent cascade 
quantities. Optimum source admittance for the cascade is that 
which gives minimum power added noise temperature of the 
individual amplifier 

 

                                    MM YYY optoptopt =′=′ . (49) 

 
The superscript “M” denotes optimum with respect to noise 
measure and power added noise temperature. Equations (48) 
and (49) are well-known results stated by Haus and Adler [5] 
in terms of noise measure. 

System noise performance in a real environment is subject 
to source admittance variations that affect receiver noise 
temperature. It is of particular interest, therefore, to know the 
sensitivity of cascade noise temperature to source variation, 
and if the sensitivity can be minimized by appropriate design 
of the individual amplifier stages. In this section, we discuss 
cascade noise correlation parameter q′ which defines cascade 
sensitivity and completes cascade amplifier characterization. 

A. Cascade q-Parameter Lower Bound 

Here, we find the lower bound of q-parameter for the 

optimum (i.e., minimum noise temperature) infinite cascade of 
identical amplifiers. 

Invariant equation (6) written for the cascade is 
 

                          

mi

e
c

G

Tq
TMT

′
−

′−′
=′′

1
1

)1(
)(

2
min

minmin0 . (50) 

 
In view of (48), and since all forward gains of the cascade 
approach infinity, (50) reduces to 
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T
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Now, lossless embedding of an arbitrary number of active two-
port devices to form a new two-port (e.g., cascade network) 
reduces the number of ports and does not necessarily preserve 
eigenvalues of the original two-port device [9]. In other words, 
constraints on the cascade network generally result in a 
minimum cold load temperature greater, but never less than 
that of the constituent device. This is expressed by the 
inequality 

 
                                         minmin cc TT ≥′ . (52) 

 
Applying (52) to (51), we have 

 

                                    
min0
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1

MT

T
q c+≥′ . (53) 

 
Equation (53) gives the lower bound of cascade noise 

correlation parameter q′ in terms of constituent device 
invariants. It shows that cascade noise sensitivity to source 
admittance cannot be reduced by any lossless device 
embedding. These results establish a fundamental performance 
constraint on high-gain detection and measurement systems. 

B. Derivation of Cascade q-Parameter 

Having found the lower bound, we now derive the actual 
cascade noise correlation parameter, again in terms of 
constituent amplifier invariants. 

In addition to the cascade conditions (48) and (49), there is 
a required optimum cascade condition on amplifier output 
admittance 

 

                                          MYY optout = . (54) 

 
These relations are used to solve for q′. The equations needed 
are obtained from the correlation matrix relation given by 
Hillbrand and Russer [10, eq. (7)] for the cascade connection 
of two two-ports. In our case, a single amplifier (first two-port) 
is placed ahead of a high-gain cascade (second two-port). In 
the limit of infinite cascade stages, the correlation matrix of 
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the resultant two-port is identically equal to that of the second 
two-port. Therefore, we can write 

 

                                     +′+=′ TCTCC  (55) 
 

where T and C are signal and noise matrices, respectively, of 
the single amplifier, given by (3) and (4). C′ is the noise 
correlation matrix of the cascade, given by (4) with primed 
variables substituted. 

After performing the matrix operations in (55) and equating 
the resulting matrix elements, we have a system of four 
equations with cascade unknowns q′, T′emin, and Y′opt = G′opt + 
jB′opt. Substituting from (48), (49), and (54), we obtain for the 
cascade noise correlation parameter 
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where Gpr is reverse power gain of an individual amplifier, 
defined as power delivered to the input termination divided by 
power entering the output port. 
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Note that (56) can be evaluated by individual amplifier 
quantities before the addition of an interstage network 
generally required by (54) since all amplifier quantities in (56) 
are invariant. 

Inspection of (56) shows that q′ ≈ 2 under the following 
conditions typical of an individual low-noise amplifier stage: 

 
                                              2≈q  (58) 

 
                                     min0min )(MTTe ≈  (59) 
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                                           1<<prG . (61) 

 
This is consistent with the general noise correlation parameter 
principles of Section III which apply equally well to an 
optimum low-noise cascade network. 

C. Simultaneous Noise and Power Match 

For best system performance, it is desirable to minimize the 
degradation of receiver noise temperature by source (e.g., 
antenna) impedance variation. Noise correlation parameter q′ 
defines sensitivity of receiver noise temperature to source 
impedance variation. We now show that the q′ lower bound 

(53) is realized by simultaneous noise and power match of the 
individual amplifier stages comprising an optimum cascade. 

Simultaneous noise and power match means that amplifier 
minimum noise temperature and maximum available gain 
occur at the same source admittance. It follows from the 
definition of Mmin (Table I) that minimum power added noise 
temperature is also realized at that same source admittance. 
Therefore, we have for such an amplifier 

 

                                     MG YYY optoptopt ==  (62) 

 

                                 

ma

e

G

T
MT

1
1

)( min
min0

−
=  (63) 

 
                                        maa GG =opt . (64) 

 
The superscript “G” denotes optimum with respect to available 
gain. According to the optimum cascade condition (54), 
amplifiers having simultaneous noise and power match operate 
in the cascade with conjugate match at the input and output 
ports. In this case, the reverse power gain Gpr is equal to 
reverse maximum available gain, and we have 
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Now, dividing (7) by (MT0)min and rearranging, the q′ lower 

bound can be expressed as 
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Using (63)–(65), we find the right-hand sides of (56) and (66) 
identically equal, thereby proving the realization of q′ lower 
bound by simultaneous noise and power match. 

We can summarize fundamental noise properties achieved 
by optimum cascade amplifier networks that include 
simultaneous noise and power match: 
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Noise temperature equation (23) in this case becomes 
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Thus, device invariants (MT0)min and Tcmin define minimum 

sensitivity of noise temperature to source impedance variation 
as well as minimum noise temperature of a high-gain cascade. 

As we know, the minimum noise temperature given in (68) 
applies not only to a high-gain cascade, but also to a single 
device at high gain by positive feedback. Likewise, in the 
limits Gmi → ∞ and Temin → (MT0)min for a high-gain single 
device, (6) shows that q is the minimum given in (67). Noise 
equation (70) shows explicitly how both general invariants of a 
device define best possible noise temperature and source 
impedance sensitivity performance of a high-gain system. 

 

V. CONCLUSION 

In this paper, we have extended the work of Haus and Adler 
[5], [9] to provide a complete and unified theory of linear 
noisy two-ports. Two general noise temperature (power) 
invariants of noisy two-ports have been identified as minimum 
power added noise temperature and minimum cold load 
temperature. The first invariant defines minimum possible 
noise temperature of a high-gain cascade of individual two-
ports—the well-known noise measure relation. In addition, we 
found that both general invariants combine to define minimum 
possible sensitivity of cascade noise temperature to source 
impedance. No embedding applied to the individual two-port 
or to the cascade can lower this minimum sensitivity. It was 
shown that a high-gain cascade amplifier network having 
simultaneous minimum noise temperature and minimum noise 
temperature sensitivity is realized by simultaneous noise and 
power match of the individual amplifier stages. We introduced 
a two-port noise correlation parameter q that determines 
amplifier noise sensitivity to source impedance, and showed 
that q ≈ 2 for any low-noise device or cascade. Thus, noise 
temperature sensitivity is approximately fixed and cannot be 
improved by amplifier or semiconductor device design. 

Associated with the general noise invariants of two-port 
networks are two invariant equations that relate network noise 
parameter invariants to gain and stability signal invariants. 
These are the hallmark of a “unified” network noise theory. 
The invariant equations and the a priori knowledge of noise 
correlation parameter q ≈ 2 can provide useful information to 
application of two-port characterization in many areas of 
interest. For example, in the contemporary field of wideband 
active receiving arrays, the active (source) impedance 
presented to a low-noise amplifier can vary significantly with 
frequency and scan angle. This is particularly important for 
systems in which receiver noise dominates, notably in radio 
astronomy, and here, the network condition q ≈ 2 can be 
applied to system design and optimization methods. (For 
example, q ≈ 2 must be applied in [16], [17] to obtain valid 
results.) For noise measurement systems and noise parameter 
extraction, q ≈ 2 in effect eliminates one variable. HEMT q 

values presented in the paper provide an estimate for FET 
devices. Bipolar transistor devices possess an inherent RC 
network at the input that reduces q slightly, compared to FETs, 
as explained by the network theory. 

REFERENCES 

[1] S. J. Mason, “Power gain in feedback amplifier,” Trans. IRE 
Professional Group on Circuit Theory, vol. CT-1, no. 2, pp. 20–25, Jun. 
1954. 

[2] M. S. Gupta, “Power gain in feedback amplifiers, a classic revisited,” 
IEEE Trans. Microw. Theory Tech., vol. 40, no. 5, pp. 864–879, May 
1992. 

[3] J. M. Rollett, “Stability and power-gain invariants of linear twoports,” 
IRE Trans. Circuit Theory, vol. CT-9, no. 1, pp. 29–32, Mar. 1962 
(correction in vol. CT-10, no. 1, p. 107, Mar. 1963). 

[4] H. Rothe and W. Dahlke, “Theory of noisy fourpoles,” Proc. IRE, vol. 
44, no. 6, pp. 811–818, Jun. 1956. 

[5] H. A. Haus and R. B. Adler, “Optimum noise performance of linear 
amplifiers,” Proc. IRE, vol. 46, no. 8, pp. 1517–1533, Aug. 1958. 

[6] J. Lange, “Noise characterization of linear twoports in terms of invariant 
parameters,” IEEE J. Solid-State Circuits, vol. SC-2, no. 2, pp. 37–40, 
Jun. 1967. 

[7] W. Wiatr, “A method of estimating noise parameters of linear 
microwave two-ports,” Ph.D. dissertation, Warsaw Technical 
University, Warsaw, Poland, 1980 (in Polish). 

[8] M. W. Pospieszalski and W. Wiatr, “Comments on ‘Design of 
microwave GaAs MESFET’s for broad-band, low-noise amplifier’,” 
IEEE Trans. Microw. Theory Tech., vol. MTT-34, no. 1, p. 194, Jan. 
1986. 

[9] H. A. Haus and R. B. Adler, Circuit Theory of Linear Noisy Networks. 
New York: John Wiley, 1959, ch. 4. 

[10] H. Hillbrand and P. H. Russer, “An efficient method for computer aided 
noise analysis of linear amplifier networks,” IEEE Trans. Circuits Syst., 
vol. CAS-23, no. 4, pp. 235–238, Apr. 1976. 

[11] H. Hillbrand and P. H. Russer, “Correction to ‘An efficient method for 
computer aided noise analysis of linear amplifier networks’,” IEEE 
Trans. Circuits Syst., vol. CAS-23, no. 11, p. 691, Nov. 1976. 

[12] K. L. Kotzebue, “Maximally efficient gain: a figure of merit for linear 
active 2-ports,” Electron. Lett., vol. 12, no. 19, pp. 490–491, Sep. 1976. 

[13] W.-K. Chen, Active Network and Feedback Amplifier Theory. New 
York: McGraw-Hill, 1980, ch. 3. 

[14] J. Engberg and T. Larsen, Noise Theory of Linear and Nonlinear 
Circuits. New York: John Wiley, 1995, ch. 4, pp. 41–48. 

[15] J. Schleeh, H. Rodilla, N. Wadefalk, P. A. Nilsson, and J. Grahn, 
“Characterization and modeling of cryogenic ultralow-noise InP 
HEMTs,” IEEE Trans. Electron Devices, vol. 60, no. 1, pp. 206–212, 
Jan. 2013. 

[16] K. F. Warnick, B. Woestenburg, L. Belostotski, and P. Russer, 
“Minimizing the noise penalty due to mutual coupling for a receiving 
array,” IEEE Trans. Antennas Propag., vol. 57, no. 6, pp. 1634–1644, 
Jun. 2009. 

[17] S. G. Hay, “Maximum-sensitivity matching of connected-array antennas 
subject to Lange noise constants,” Int. J. Microw. Optical Technol., vol. 
5, no. 6, pp. 375–383, Nov. 2010. 

 

This is the author’s version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available athttp://dx.doi.org/10.1109/TMTT.2013.2284492

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

13 

 
TABLE I 

KNOWN INVARIANTS OF LINEAR NOISY TWO-PORTS 

Symbol Name Expression Type 

U unilateral gain 
])[Re][Re]Re[y][Re(4 21122211

2

1221

yyy

yy

−
−

 general 

Mmin minimum noise measure 
min

/11

1











−
−

aG

F
 general 

Temin minimum noise temperature noise parameter special 

Gma maximum available gain 
12 −+ kk

Gms  special 

Gaopt associated gain 
)]([Re]Re[ opt11211222

2

opt11

opt

2

21

∗∗ +−+ YyyyyYy

Gy
 special 

Gms maximum stable gain 
12

21

y

y
 special 

k stability factor 
2112

21122211 ][Re][Re][Re2

yy

yyyy −
 special 
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TABLE II 
NEW INVARIANTS OF LINEAR NOISY TWO-PORTS 

Symbol Name Expression Type 

(MT0)min 
minimum power added   

noise temperature )/11(2

)/11)(1(4 2
min

mi

mie

G

GqT

−




 ∆+∆+−−

 general 

Tcmin 
minimum cold load 

temperature )/11(2

)/11)(1(4 2
min

mi

mie

G

GqT

−




 ∆−∆+−−

 general 

q noise correlation parameter 
min

0opt4

e

n

T

TGR
 special 

q′ 
cascade noise correlation 

parameter 
pr

ms

e

G

G

k

MT

Tq

−

−
−

+

1

2

)(

)2(
2

min0

min

 special 

Gmi maximum invariant gain 

ms

ms

G
k

G

1
2 −

 
special 

Gpr reverse power gain 

2

opt11

12

MYy

y

+
 special 

q′min 
minimum cascade noise 
correlation parameter min0

min

)(
1

MT

Tc+  general 

N′min 
minimum cascade               

N-parameter 0

minmin0

4

)(

T

TMT c+
 general 
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